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tions, and requires intense interpolations. Thus, ever since
the collocated grid arrangement was proposed [5], stag-Pressure-based and artificial compressibility methods for calculat-

ing three-dimensional, steady, incompressible viscous flows are gered grids have seldomly been used, while collocated grids
compared in this work. Each method is applied to the prediction of are being increasingly applied to recent studies [6–15].
three-dimensional, laminar flows in strongly curved ducts of square Nevertheless, there are certainly some critical issues thatand circular cross sections. Numerical predictions from each

require attention when using the collocated grid arrange-method are compared with available experimental data and pre-
ment, for instance, one might need artificial damping terms,viously reported predictions using a multigrid numerical method.

The accuracy, grid independence, convergence behavior, and com- or a special cell face interpolation technique to avoid the
putational efficiency of each method are critically examined. Hence, checkerboard problem [5].
some of the merits and demerits of each method are revealed in

The artificial compressibility method (ACM) for calcu-this study. Q 1996 Academic Press, Inc.
lating steady flows was proposed by Chorin [16]. In this
method, an artificial compressibility term is introduced in
the continuity equation, and the unsteady terms in the

1. INTRODUCTION
momentum equations are retained. Hence, the system of
equations becomes hyperbolic and many of the methodsThree-dimensional, steady, incompressible flows are
developed for hyperbolic systems can be applied. Severalcommonly found in a wide range of industrial devices. One
variations of the ACM method have been reported in theof the many challenges in computational fluids dynamics
literature. Steger and Kutler [17], Kwak et al. [18], and(CFD) of incompressible flows comes from the weak cou-
Rogers et al. [19] used an implicit approximate factoriza-pling of the velocity and pressure fields. This coupling has
tion scheme by Beam and Warming [20]. Rogers et al. [21]to be accomplished in such a way as to ensure that the
used higher-order flux splitting techniques. Rogers anddivergence of the velocity vanishes. Among commonly
Kwak [22] used a flux-difference split approach. Ramshawused methods for handling the velocity–pressure coupling
and Mousseau [23] accelerated convergence of the ACMin incompressible flows are pressure-based methods, and
method by introducing an artificial bulk viscosity to dissi-methods based on the concept of artificial compressibility.
pate the artificial sound waves more rapidly. Further, Tur-The pressure-based method (PBM), which is perhaps
kel [24] introduced artificial time derivatives in the momen-the most widely used for incompressible flows, was intro-
tum equations to allow for faster convergence. Recently,duced by Harlow and Welch [1] for the calculation of
Rosenfeld and Kwak [25] extended the ACM method tounsteady flows. The extension of this method to steady
solve unsteady problems.flows has been detailed by Patankar and Spalding [2] and

Patankar [3]. The basic idea is to formulate a Poisson At this point, it must be emphasized that the PBM and
ACM methods are two different approaches to solve theequation for pressure corrections, and then to update the

pressure and velocity fields until a divergence-free velocity system of nonlinear algebraic equations that result when
the steady state governing equations are discretized. How-field is obtained. Two different grid arrangements have

been used in implementations of the PBM method: (i) ever, each method can be used with either a finite differ-
ence (FD) or a finite volume (FV) formulation for thestaggered grids [4] with different control volumes for veloc-

ities and pressure and (ii) collocated grids [5] with the spatial discretization. Ideally, a comparison of the two
methods should be carried out for the same discretization,same control volume for all variables. However, the use

of staggered grids introduces significant complexities in preferably the FV formulation which is inherently more
conservative [26]. However, historically, the ACM methodcode development, increases the number of storage alloca-
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has been implemented with FD discretizations so as to
simplify code development. Hence, to our knowledge, the
only published comparative evaluation of the ACM and Eji 5 r 3

Uji

Ujiu

Ujiv

Ujiw
4,

PBM methods has been carried out in the context of a FD
formulation, and has addressed only two-dimensional flows
[27]. The objective of this work is to carry out a critical
comparison of accuracy, grid independence, convergence
behavior, and computational efficiency of two representa-
tive pressure-based and artificial compressibility methods
for calculating three-dimensional, steady, incompressible,
laminar flows.
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The PBM approach is implemented based on the work
of Tamamidis and Assanis [13], using a finite volume (FV)
formulation on a collocated grid arrangement. The ACM
approach is based on the widely used work of Rogers et

3 4 3 4
al. [28] and is implemented with a finite-difference (FD)
formulation. This particular ACM method has been se- In the above equations Uji is the scaled ji-component
lected since it uses a single artificial parameter, rather than of the contravariant velocity vector, and gji jj are metric
two parameters which are used in some of the competing components introduced from the transformation of the
ACM methods [24]. Both the PBM and ACM methods use equations from the physical (x, y, z) to the computational
generalized body-fitted coordinates (BFC) and the third- (j, h, z) space:
order QUICK discretization scheme [29]. While the PBM
is implemented with the more conservative FV formulation
and the ACM is implemented with a FD formulation, a Uji 5 Ja Su
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­zD. (3)
comparison of the alternative approaches is still useful
to the CFD community, as it can establish some of the

Expressions for Jacobian of the transformation and theperformance and accuracy characteristics of each method
various metric terms can be found in [30]. The term Snoin three-dimensional problems. In order to quantify the
represents the viscous terms due to the nonorthogonalityerror introduced by implementing the ACM method with
of the grid (i.e., the cross-derivative terms) [30].a FD rather than a FV discretization, a comparison of the

The convection-diffusion terms are discretized astruncation errors produced by each technique will also be
conducted and its effect on overall accuracy will be as-
sessed. The benchmark evaluation of the two methods will (Ẽi)cf 5 (Ei)cf 1 (Ei,y)cf

(4)

be performed through calculations of laminar flows in 908
curved ducts of square and circular cross sections. Solutions
obtained using the two methods will be compared with
available experimental data and the well-resolved numeri- 5 r(Uji)cf 3
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cal predictions of Smith and Vanka who used the multigrid
technique [15].

where (E1, E2, E3) 5 (E, F, G), (j1, j2, j3) 5 (j, h, z), and2. MATHEMATICAL FORMULATION
cf stands for cell face. The vector of unknowns at a cell

2.1. Pressure-Based Method face is calculated based on the relation

The transformed governing equations for steady, vis-
cous, incompressible flows can be written in the following qcf 5 qu1 1

3qd1 2 2qu1 2 qu2

8
, (5)

format [30]:

where d1, d2, u1, u2, and u3 are the first downstream,
the second downstream, the first upstream, the second­Ej
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1 P, (1) upstream, and the third upstream nodes, respectively, from

the cell face, and the vector of the unknowns is q 5
[u v w]T. As shown in [30], the above interpolation corre-
sponds to the third-order QUICK scheme of Leonard [29].where
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The terms in parentheses can be viewed as antidiffusion Eqs. (6) and (7) are solved using the ADI method, where
one sweep of the domain corresponds to the three sweepsterms and are treated explicitly [30]. The diffusion terms

are discretized using second-order derivatives. in the three respective dimensions. Here, one sweep is
performed by solving along lines in the two directions onGrouping the various terms together we obtain a system

of equations of the format [30] a plane and then moving to the next plane. The solution
along one line is achieved using a tridiagonal matrix solver
which has been suitably vectorized for the Cray-Y/MPaPqP 5 aEqE 1 aWqW 1 aNqN (6) supercomputer.

1 aSqS 1 aFqF 1 aRqR 1 b, Beyond tracking variable residuals throughout the con-
vergence process, a mass error is computed to check how

where b is the source term vector which contains the pres- accurate, i.e., how close to divergence-free the converged
sure terms, the diffusion terms due to grid nonorthogo- velocity field is. The mass error is defined as the normalized
nality, and the antidiffusive terms. The coupling of the root-mean square of the divergence of the velocity field.
continuity and momentum equations is performed using
the interpolation approach of Rhie and Chow [5]; more

2.2. Artificial Compressibility Method
details can be found in [30].

In the artificial compressibility method, the time deriva-The pressure field is obtained using the SIMPLEC algo-
tive terms are retained in the formulation. The governingrithm [31]. In this algorithm, the final form of the pressure
equations in generalized coordinates are [28]correction equation becomes [30]
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5 cross terms,

where the source term bp9 is the mass imbalance in the
control volume. where

Equations (6) and (7) constitute a system of four non-
linear algebraic equations. The system is linearized by re-

Q̂ 5 JaQ 5 Ja[p u v w]T, (11)sorting to relaxation, where the coefficients in Eqs. (6)
and (7) are evaluated using the values from the previous
iteration level. First, Eq. (6) is solved for the three velocity
components simultaneously. Then, the mass imbalance in

Ê 5 Ja 3
bU

uU 1 jx p
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wU 1 jz p
4, F̂ 5 Ja 3
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vV 1 hy p
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4,every control volume is calculated, followed by the solution

of Eq. (7). The pressure corrections are used to correct
the pressure and the velocities. This predictor–corrector
procedure constitutes one iteration. The solution is de-
clared convergent when the maximum residual becomes
smaller than a convergence criterion (1025 or lower). Here,

Ĝ 5 Ja 3
bW

uW 1 zx p
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4, (12)the residual of an equation is defined as
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U 5 ujx 1 vjy 1 wjz , V 5 uhx 1 vhy 1 whz ,
(13)

W 5 uzx 1 vzy 1 wzz ,where N is the number of nodes, Eri is the error of an
equation at a node

Eri 5 aiqi 1 bi 2 aPqP , (9)
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into the domain. For the residual of the pressure correction
equation, however, the error in Eq. (9) is equal to the mass
imbalance in the control volume, and the reference flux is
the mass flux entering the domain. It should be noted that

3 4 3 4
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calculated using second-order derivatives. To make the
scheme stable, the fourth-order smoothing terms are added
to Eq. (17). The use of central differences for the convec-
tive and diffusive terms leads to block-tridiagonal matrices.
More details can be found in [18, 28], where a methodĜy 5 Re21gzz

0

­u
­z

­v
­z

­w
­z

. (14)
similar to the one implemented in our work is described
in detail. To make a fair comparison with the PBM method,
the same third-order QUICK scheme of Leonard [29] was

3 4
implemented following the deferred correction approach
of Khosla and Rubin [32]. This approach gives rise to high

Note that the viscous terms have been simplified by treating order correction partial differences, which are moved into
the cross-terms explicitly. the RHS of the equations and lumped into separate high

In the present implementation of the artificial compress- order source terms; the latter are then treated explicitly
ibility method, Eq. (10) is advanced in time using the Beam during the iteration procedure:
and Warming [20] approximate factored finite-difference
scheme. According to the Euler implicit scheme, S­E

­j
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Both convergence and accuracy checks are defined for

the solution, the DQ residual, and the mass error. The DQ
Using Taylor series expansion we obtain residual, referred to as the variable residual, is defined as

the root-mean-square value of the change of variable Q
between two consecutive time steps. This value shouldÊn11

i 5 Ên
i 1

­Ên
i

­Q
DQ 1 O(Dt2), (16)

decrease by at least two to three orders of magnitude for
the solution to be declared convergent. The mass error,

where (Ê1, Ê2, Ê3) 5 (Ê, F̂, Ĝ), and DQ 5 Qn11 2 Qn. i.e., the normalized root mean square of the divergence of
Substituting Eq. (16) into Eq. (15), and the latter into Eq. the velocity field, is defined and used as in the PBM code.
(10) yields

2.3. Boundary Conditions

Three types of boundary conditions are used in thisHI 1 Dt
1
Ja F ­

­ji
(An

i 2 Gi)GJ DQ 5 R, (17)
work: inlet, exit, and wall boundary conditions. At the
inlet, the values of all variables are prescribed. At the

where outlet, the streamwise gradient for each variable is pre-
scribed to be equal to zero. At the walls, no slip and no
penetration are assumed, while the pressure gradient nor-
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­Êi

­Q
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­Êi,y

­Q
(18) mal to the wall is assumed to be zero.

3. COMPUTATIONAL EXPERIMENTS

3.1. Flow in a 908 Square DuctI 5 3
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
4 (19)

The first test case deals with the prediction of the laminar
flow in a 908 curved duct of square cross section. Numerical
predictions generated by the present two methods are com-
pared with the measurements of Humphrey et al. [34] andR 5 2

Dt
Ja F­En

i
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1 S­G n
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DQnG1 cross terms (20)

the previously reported multigrid predictions of Smith and
Vanka [15]. Since the present studies employ high-order
discretization schemes, moderate size grids are used, i.e.,with (A1, A2, A3) 5 (A, B, C), and (U1, U2, U3) 5 (U, V, W).

Equation (17) is a finite difference scheme with first- 52 3 20 3 20 cells with the pressure-based method and
53 3 21 3 21 nodes with the artificial compressibilityorder time accuracy. By approximate factorization, the

three-dimensional problem is split into three one-dimen- method. Our grid, shown in Fig. 1a, was generated using
Thompson’s transfinite interpolation method [35]. Thesional problems. The convective terms are discretized using

second-order central differences. The diffusion terms are multigrid studies of Smith and Vanka [15] used a very
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sively closer to the outer wall, with a correspondingly low
velocity region adjacent to the suction side. This redistribu-
tion of streamwise velocity is caused by the secondary flow
in the duct, as illustrated in Figs. 1c–e. At 308 (Fig. 1c) a
pair of D-shaped counterrotating vortices has already been
formed. At the 608 section the centers of the vortices have
shifted considerably from their mean radius location at the
308 section towards the inner wall. Their previous D-shape
has changed and now resembles a kidney. At the 908 sec-
tion, two pairs of counterrotating vortices have been
formed. Due to this secondary flow, core fluid is convected
from the pressure surface along the sidewalls, and low
momentum boundary layer fluid from the sidewalls is accu-
mulated at the inner wall. This secondary motion is respon-
sible for the enhanced mixing and heat transfer coefficients,
as well as the higher pressure and frictional losses associ-
ated with curved ducts.

To explore the ability of the two methods to predict
accurate magnitudes of flow velocities, a quantitative com-
parison of our results with the measurements of Humphrey
et al. [33] at several midspan locations along the duct is
shown in Fig. 2. Although both methods are in good
agreement with the experimental results at the 08 and 308
stations, some discrepancies between the PBM and ACM
methods start appearing at the 608 section and become
more pronounced at the 908 section. The cause of these
discrepancies does not appear to be grid dependence, since
similar discrepancies are experienced with the well-re-
solved calculations of Smith and Vanka [15]. It should be
noted, however, that PBM numerical predictions are closer
to the experimental data at the 908 section than eitherFIG. 1. Laminar flow predictions in a 908 curved duct of square cross-

section: (a) perspective view of the grid topology; (b) flow in the vertical ACM or multigrid predictions. Overall, the comparison of
mid-plane; (c), (d), and (e) secondary flow at the 308, 608, and 908 PBM and ACM predictions with experimental data and
cross sections. multigrid predictions show that both methods under evalu-

ation are capable of producing satisfactory results.
Figure 3 shows the variation of the pressure coefficient

Cp inside the bend versus the distance Xh from the ductdense fine grid (120 3 64 3 32) for half of the passage
taking advantage of symmetry. A parabolic velocity profile inlet, measured along the centerline of the duct and nondi-

mensionalized with respect to the hydraulic diameter offor fully developed flow is prescribed at the inlet, which
is located at a distance equal to two hydraulic diameters the duct. A radial pressure gradient is present even at two

hydraulic diameters upstream. Initially a severe, adverseupstream of the bend. The downstream duct length is equal
to two hydraulic diameters. The Re number based on the pressure gradient develops on the pressure side of the

bend, while a weaker, favorable pressure gradient is evi-hydraulic diameter of the duct is 792, which corresponds
to the flow of water with velocity equal to 0.0198 m/s. The dent in the suction side. Their combination is responsible

for the initial inward shift of the core flow. Up to 258dimensions of the duct at each cross section are 40 3 40
mm, and the radius of curvature of the suction side is into the bend, the agreement between the two methods is

excellent. After about 458, a favorable pressure gradient72 mm.
Figures 1b–e show the flow field at various cross-sec- rapidly develops in the suction side of the bend, and slight

differences between the predictions of the methods appear.tional planes, obtained by employing the PBM and the
ACM methods. No significant differences between the re- These slight differences continue in the section down-

stream of the bend.sults of the two methods can be seen. Figure 1b shows the
flow development in the vertical midplane. The ‘‘core’’ The computational performance of each of the two algo-

rithms in the square duct test is investigated further byfluid, defined as fluid of velocity greater than about 0.9 of
the maximum at each streamwise station, is found progres- varying user-specified, method parameters that control
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FIG. 2. Comparison of calculations with experimental data for laminar flow in a curved duct of square cross section.

convergence. Figure 4a shows the number of iterations namely the artificial compressibility factor b. The effect of
this parameter on the number of iterations is shown in Fig.required by SIMPLEC for convergence as a function of

the pressure underrelaxation factor gp; the velocity under- 4b. Clearly, very small or large values of b slow down
solution convergence significantly and may even cause di-relaxation factor gu was used as a parameter. We should

note here that one sweep of the domain for the momentum vergence. Using the optimum value of b can markedly
reduce the required number of iterations for convergence.and pressure equations was performed at each iteration.

For most values of gu (between 0.3 and 0.7), there exists In this study, the optimum value of lies between 4 and 6.
Note, however, that this optimum value may depend,a range of gp values that can be used without considerably

affecting the convergence rate. When virtually no underre- among other factors, on geometry, grid density, and flow
field. A more detailed discussion concerning the selectionlaxation is applied to the velocities (gu = 0.9), the required

number of iterations is considerably reduced, but conver- of the optimum value of this parameter will be presented
in Section 4.3.gence becomes more sensitive to the values of gp used.

Based on the evidence shown in this test problem, it ap-
pears that a value of gp = 0.7 is nearly optimal for all values

3.2. Flow in a 908 Circular Duct
of gu used. This leaves only one parameter (gu) to play
with in order to minimize the number of iterations required Further evaluation of the two methods in a different

geometry is achieved by comparing the predictions of thefor convergence. In general, while the optimum underre-
laxation factor(s) may depend on the specifics of a given laminar flow in a 908 curved duct of circular cross section

against the laser Doppler measurements of Enayet et al.geometry and flow field, a safe guess can always be to
set both gp and gu equal to 0.5 and expect reasonable [36] and the computations of Smith and Vanka [15] using

the multigrid method. The grid used for our computationsconvergence behavior.
On the other hand, the artificial compressibility method consists of 53 3 20 3 20 cells for the PBM method, and

54 3 21 3 21 nodes for the ACM method, as shown inuses one user-specified parameter to control convergence,
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FIG. 3. Wall static pressure coefficient for laminar flow in a curved
square duct.

FIG. 5. Laminar flow predictions in a 908 curved duct of circular
cross-section: (a) perspective view of the grid topology; (b) flow in the
vertical mid-plane; (c), (d), and (e) secondary flow at the 308, 608, and
1-dh cross sections.

Fig. 5a. This grid was generated numerically, following the
elliptic grid generation procedure of Thompson et al. [34].
Again, our computations are compared with corresponding
results reported by Vanka and Smith [15] for their finest
grid (120 3 64 3 32 cells for half of the duct). The inlet
velocity profile is prescribed by fitting the experimental
data at a distance equal to 0.58 hydraulic diameters up-
stream of the bend. The downstream duct length is equal
to five diameters. The Re number based on the diameter
of the duct is 500, which corresponds to the flow of water
with velocity equal to 0.0105 m/s. The diameter of the duct
is 48 mm, and the radius of curvature of the suction side
is 110.4 mm.

Figure 5b shows the flow development at the vertical
midplane. Similar to the square duct case, the maximum
streamwise velocities are found progressively closer to theFIG. 4. Number of iterations required for convergence versus user-
outer wall. Contours of the streamwise velocity in threespecified parameters for (a) pressure-based method and (b) artificial

compressibility method. cross-stream planes are presented in Figs. 5c–e; the con-
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FIG. 6. Comparison of calculations with experimental data for laminar flow in a curved duct of circular cross section.

tours show the effects of strong secondary flow which dis- ACM and PBM predictions of the pressure coefficient
in the symmetry plane of the duct are compared in Fig. 7.places the region of maximum velocity to the outside of

the bend. The secondary flow develops gradually; in the There is a moderate adverse pressure gradient along the
pressure side, which becomes favorable after approxi-308 plane the only visible effect is a thickening of the shear

layer on the inside of the bend. By 608 the secondary mately 408. On the suction side of the duct, the pressure
flow has become almost fully developed, as shown by the
distortion of the contours. The third set of contours, in the
plane located one diameter downstream of the bend, shows
that the secondary motion persists without significant de-
cay to this distance.

The distributions of the calculated streamwise velocities
are plotted against the measured ones [36] and previous
numerical predictions [15] at various midspan locations
along the duct (Fig. 6). The velocities have been normalized
with respect to the inlet velocity. The results indicate good
quantitative agreement of PBM predictions with both mea-
surements and multigrid predictions. On the other hand,
ACM predictions are in slightly less satisfactory agreement
with measurements and multigrid predictions, especially in
the 308 and 608 sections of the duct. The slight discrepancy
between PBM predictions and experimental measure-
ments that exists at the downstream section of the duct
has also been noticed by Smith and Vanka [15] on their
very fine grid and, thus, cannot be attributed to the grid FIG. 7. Wall static pressure coefficient for laminar flow in a curved

circular duct.sizes used here.
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gradient is favorable from the inlet to the duct. Only slight ble of generating results that compare satisfactorily with
experimental measurements. However, in general, thedifferences can be seen between 158 and 308, and between

608 and one diameter downstream from the exit of the 908 PBM method compares slightly more favorably with mea-
surements and the multigrid method than the ACMbend. On the other hand, there is almost no difference

along the pressure side. Note also that in the downstream method. For example, in the downstream section of the
ducts the ACM method captures the velocity distributionssection of the duct, the Cp-lines generated by PBM and

ACM are very close. less accurately than the PBM method. Our observations
are consistent with the findings of Pentaris et al. [27]. UponStudies of grid independence and convergence of flow

solutions were performed for the circular duct geometry convergence, the mass errors of the PBM code is 100 times
lower than the mass error of the ACM code. This discrep-using a series of grid sizes. With the PBM method, a coarse

grid (16 3 6 3 6 cells), a moderate grid (28 3 10 3 10 ancy does not appear to be related to grid density since
results for each method have been found to be grid inde-cells), and a relatively dense one (53 3 20 3 20 cells) were

used. The corresponding three grids for the ACM method pendent. Furthermore, both methods use the same high
order discretization scheme—the third-order QUICKemployed 17 3 7 3 7 nodes, 29 3 11 3 11 nodes, and

54 3 21 3 21 nodes. The grid independence of the results scheme [29]. In addition, the artificial compressibility
term (which is of the same order as the variable residuals)is explored in Fig. 8 for the two methods. Using the PBM

method, differences in predictions from the moderate and is 1000 times smaller than the overall mass error in the
ACM code upon convergence, as indicated by Figs. 9adense size grids are relatively minor, indicating that grid

independent results have been obtained with the moderate and 9b. Hence, the larger mass error in the ACM
code should be attributed to (i) the fourth-order explicitsize grid. At the same time, the ACM method also achieves

grid independence with the moderate size grid. This dem- smoothing term used to stabilize the central difference
scheme in the particular implementation of the ACMonstrates the equivalency of the two discretization ap-

proaches. method adopted here and (ii) the fact that the ACM
method uses the less conservative FD formulation ratherThe convergence behavior of the PBM and ACM meth-

ods is compared in Fig. 9. For the PBM method, conver- than the FV formulation which is used to implement
the PBM method.gence is established when the maximum residual drops

below the specified strict criterion. In the ACM method, Further, to quantify the contribution of the discretization
formulation on the overall discrepancy, an estimation ofvariable residual indicates both velocity and pressure resid-

uals since the continuity and momentum equations are the truncation errors produced by FD and FV formulations
has been made. As shown by Leonard [26] for a one-solved in a fully coupled manner. Recall that the conver-

gence criterion for the ACM method is that the variable dimensional case, the excess truncation error (TE) of the
FD formulation over the FV formulation for the secondresidual drops by at least three orders of magnitude. Con-

vergence of all residuals could be achieved by both meth- or higher order discretization of the convection term is
given byods without difficulty. In the PBM method, the coarse

grid required 200 iterations for convergence, while the
moderate and dense size ones converged after 350 and 650
iterations, respectively. While ACM exhibited a similar (TE)FD 2 (TE)FV 5

1
24

­3f

­x3 (Dx)2

(21)rate of convergence with PBM for the coarse and moderate
grids, the ACM method converged faster (within 300 itera-

1
1

1920
­5f

­x5 (Dx)4 1 ? ? ? .tions) for the dense grid; the latter characteristic is perhaps
the greatest advantage of the ACM method when using
finer grids. As expected for both methods, the solutions
on coarser grids converge faster, but are less accurate than After the solution from the ACM method has converged

(the residual has been dropped more than three orders ofdense grids solutions (see Fig. 9b). Note also that, for the
denser grid, the ACM mass error is 100 times larger than magnitude) and has reached grid independence, Eq. (21)

was used to estimate the difference in mass errors thatthe corresponding PBM mass error upon convergence of
residuals. A detailed discussion of this discrepancy is pre- would be produced by FD and FV formulations in the

ACM code. We found that the mass error could decreasesented in the following section.
by approximately 4% if we choose to implement the FV

4. DISCUSSION formulation in the ACM code.
Following the same methodology, a similar conclusion

4.1. Accuracy
can be reached for the discretization of the diffusion terms
[37]. Hence, it can be deduced that the PBM code canOur computations on the curved duct geometries have

demonstrated that both PBM and ACM methods are capa- achieve a better mass conservation than the ACM code,
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FIG. 8. Comparison of PBM (left) and ACM (right) predictions with experimental results on several grids.

even if a FV formulation is implemented with the latter variable residual of the ACM code can be dropped by
three orders of magnitude in 300 iterations; correspond-method.
ingly, the maximum residual of the PBM code can be

4.2. Convergence Behavior
reduced to 1026 in 550 iterations. However, it should be
noted that, for this illustration, the PBM code is specifi-Perhaps the most attractive feature of the ACM method

is that it converges faster because it solves the continuity cally vectorized and optimized for the CRAY vector
platform. Due to the vectorization of the tridiagonaland momentum equations in a fully coupled manner

instead of the uncoupled approach of the PBM method matrix solver, the PBM code requires more iterations
to converge since the coefficients are updated at a slower[27, 35]. For instance, for the dense grid calculation, the
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FIG. 9. Comparison of convergence characteristics of PBM (left) and ACM (right) methods on various grid sizes: (a) variable residuals; (b)
mass errors.

rate. It has been estimated that the convergence rate of value of 5 was shown to be optimum for three-dimensional
laminar computations in a curved duct. While Kwak et al.the PBM method could be speeded-up by up to 25% if

the code were unvectorized. [18] have suggested a criterion to guide the selection of
the parameter b, its evaluation depends on estimates of

4.3. User Specified Parameters characteristic lengths for vorticity waves, pressure waves,
geometry, and Reynolds number based on eddy viscosity,For laminar flow computations, there are two basic user-
many of which are not known a priori. Unfortunately, thespecified parameters in the PBM method, namely the ve-
stability and convergence are sensitive to the value of thelocity and pressure underrelaxation factors, versus one pa-
parameter b [35]. Therefore, although the ACM methodrameter in the ACM method, i.e., the artificial compress-
uses a single parameter to control convergence, its selec-ibility factor. These numerical parameters depend on the
tion requires an experienced user and considerable intu-geometry, grid size, and flow field details. In general, while
ition.the optimum underrelaxation factor(s) of the PBM method

may depend on the specifics of a given geometry and flow
4.4. Computational Performance

field, a safe guess can always be to set both gp and gu

equal to 0.5 and expect reasonable convergence behavior. When either the PBM or ACM method is implemented
in a computer code, the overall computational perfor-Since little intuition is required to select the underrelax-

ation factors, the PBM method is reasonably user-friendly. mance will depend on several factors. While the number
of iterations is important, the ultimate discriminator is cost;On the other hand, the optimum artificial compressibility

factor can assume a wide range of values from problem the latter depends on CPU time and memory requirements
of the selected algorithms. In turn, the CPU time dependsto problem. In previous studies, Rogers and Kwak [22]

investigated values of b between 0.001 and 100 and recom- on number of iterations, number of operations per itera-
tion, and floating point operations per second (MFLOPS).mended a value of 0.1 to be optimum for the problem of

a backward-facing step. Pentaris et al. [27] used a value of Furthermore, for any given machine, the MFLOPS count
will depend on the efficiency with which the selected algo-b = 1 for two-dimensional flow problems. In our study, a
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rithm utilizes the computer architecture. Hence, the discus- slightly more favorably with measurements and other well-
resolved computations than the results of ACM.sion presented below is only meant to compare the compu-

tational performance of the two codes on a representative (ii) Perhaps the most attractive feature of the ACM
vector supercomputer and a scalar workstation. method is that it converges faster because it solves the

On a vector machine, such as the Cray-Y/MP system, continuity and momentum equations in a fully coupled
the PBM code achieves very efficient utilization (190–240 manner. However, PBM produces converged solutions
MFLOPS) of the computer architecture. In particular, the with better mass conservation than ACM. This deficiency
inversion of the vectorized tridiagonal matrices, which con- is mainly attributed to the smoothing term which was used
sumes about 35% of the total CPU time, runs at approxi- in the particular implementation of the ACM method that
mately 70–140 MFLOPS (depending on grid density.) On was adopted here.
the other hand, the 4 3 4 block-tridiagonal matrices re-

(iii) The ACM method requires the use of only one
sulting from the implicit scheme which was implemented

adjustable numerical parameter to control convergence.
in the ACM code do not vectorize efficiently, yielding

However, the method’s stability and convergence are sensi-
performance in the neighborhood of 30 MFLOPS. Overall,

tive to this parameter, and its selection requires an experi-
while the number of iterations required for convergence

enced user. While the PBM method typically requires two
by the PBM code is more than double the number required

underrelaxation factors, the latter can be selected with
by the ACM code, the former requires considerably less

little intuition, thus making the method more user-friendly.
CPU time than the latter. For example, on a relatively

(iv) The computational performance of the presentdense grid size (54 3 21 3 21), the PBM code consumes
codes which implemented the PBM and ACM methods1 min of CPU time, while the ACM code takes 5 min of
depends on the available computer architecture. On a vec-CPU time to compute the 3D flow in a duct of circular
tor machine, the PBM code would run approximately fivecross section.
times faster due its efficient inversion of the tridiagonalWhen the PBM and the ACM codes are run on a scalar
matrices. On a scalar machine, the ACM code would runmachine, the number of operations involved in inverting
faster due to its reduced number of iterations required fortridiagonal or block-tridiagonal matrices should be compa-
convergence. Note however, that the ACM code wouldrable. As a result, the number of iterations required for
require 16 times more memory in both machines.convergence by each code becomes the paramount factor

in determining overall CPU time. On an IBM Risc 6000
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